Efficient Square-based Montgomery Multiplier for All Type C.1 Pentanomials
نویسندگان
چکیده
In this paper, we present a low complexity bit-parallel Montgomery multiplier for GF(2m) generated with a special class of irreducible pentanomials xm + xm−1 + xk + x + 1. Based on a combination of generalized polynomial basis (GPB) squarer and a newly proposed square-based divide and conquer approach, we can partition field multiplications into a composition of sub-polynomial multiplications and Montgomery/GPB squarings, which have simpler architecture and thus can be implemented efficiently. Consequently, the proposed multiplier roughly saves 1/4 logic gates compared with the fastest multipliers, while the time complexity matches previous multipliers using divide and conquer algorithms.
منابع مشابه
A Novel Modular Reduction Approach to Reduce the Delay for High-throughput Computation, and Low Latency
Recently, finite field multipliers having high throughput rate and low-latency have gained great attention in emerging cryptographic systems, but such multipliers over GF(2) for National Institute Standard Technology (NIST) pentanomials are not so abundant. In this paper, we present two pairs of low-latency and highthroughput bit-parallel and digit-serial systolic multipliers based on NIST pent...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملHigh-Speed Polynomial Basis Multipliers Over for Special Pentanomials
Efficient hardware implementations of arithmetic operations in the Galois field are highly desirable for several applications, such as coding theory, computer algebra and cryptography. Among these operations, multiplication is of special interest because it is considered the most important building block. Therefore, high-speed algorithms and hardware architectures for computing multiplication a...
متن کاملLow-Complexity Parallel Systolic Montgomery Multipliers over GF(2m) Using Toeplitz Matrix-Vector Representation
In this paper, a generalized Montgomery multiplication algorithm in GF(2m) using the Toeplitz matrix-vector representation is presented. The hardware architectures derived from this algorithm provide low-complexity bit-parallel systolic multipliers with trinomials and pentanomials. The results reveal that our proposed multipliers reduce the space complexity of approximately 15% compared with an...
متن کاملGF(2) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials
Introduction: The squarer is an important circuit building block in square-and-multiply-based exponentiation and inversion circuits. When GF(2) elements are represented in a normal basis, squaring is simply a circular shift operation. Therefore, most previous works on squarers focused on other representations of GF(2) elements. For practical applications where values of n are often in the range...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017